

Serial Port
Complete

 COM Ports,
USB Virtual COM Ports,

and
Ports for Embedded Systems

Second Edition

Jan Axelson

Lakeview Research LLC
Madison, WI 53704

This page intentionally left blank

xiv

-���2�����	�

This book explores wide and varied territory, including hardware and software;
ports in PCs and in embedded systems; and RS-232, RS-485, and wireless
interfaces. You don’t need to read the book straight through. If you’re interested
in a particular topic, you can skip right to it.

The first chapters focus on hardware and interfacing. Chapters 1–2 are an
introduction to asynchronous serial communications. Chapter 3 discusses serial
ports in PCs, and chapters 4–8 are a guide to interfacing using RS-232,
RS-485, and wireless technologies.

The next chapters are a guide to programming. Chapters 9–10 show how to
program serial ports on PCs using Visual Basic .NET and Visual C# .NET.
Chapter 11 shows how to program serial ports for embedded systems with
examples for microEngineering Labs’s PICBASIC PRO compiler and Micro-
chip Technology’s MPLAB® C18 C compiler.

Chapters 12–13 focus on hardware and programming for RS-485 serial net-
works.

Chapters 14–16 explain how to implement USB virtual COM ports using spe-
cial-purpose and generic USB controllers.

If you’re looking for example code, see the entries under code example (embed-
ded) and code example (PC) in the index.

-���2�*�������!����	0	�����

Much has happened in the world of computing since the first edition of this
book was released. For this second edition, I’ve revised and updated the con-
tents from start to finish.

One addition is example code in C/C# as well as Basic. This book includes
code examples for PCs and for embedded systems (microcontrollers).

Also new in the Second Edition are these topics:

• Designing and programming USB virtual COM ports.
• Using wireless technologies to transmit serial data.
• Accessing serial ports over Ethernet or Wi-Fi networks.
• Transferring any kind of text data using Unicode encoding.

xvi

�44��8�������

This book uses the following abbreviations to express quantities and units:

����������	

���������

���

��	�����

����������	� ���������	� �����

p pico 10-12

n nano 10-9

µ micro 10-6

m milli 10-3

k kilo 13

M mega 106

����������	� ������

A amperes

F farads
Ω ohms
V volts

����������	� ������

s seconds
hr hours
Hz Hertz (cycles per second)

����������	� ������

in. inches
ft feet

 xvii

bps = bits per second

Some expressions contain multiple units, such as ps (picoseconds) and mA
(milliamperes).

���������	���	

The following conventions apply to numeric values in the text:

Binary values have a trailing subscript “b”. Example: 10100011b.

Hexadecimal values have a trailing “h”. Example: A3h

All other values are decimal. Example: 163

This page intentionally left blank

This page intentionally left blank

Options and Choices

 3

Table 1-1: Comparison of popular computer interfaces. Where a standard doesn’t
specify a maximum, the table shows a typical maximum.
Interface Format Number of

Devices
(maximum)

Distance
(maximum,
ft)

Speed
(maximum,
bps)

Typical Use

RS-232
(TIA-232)

asynchronous
serial

2 50-100 20k (faster
with some
hardware)

Modem, basic
communications

RS-485
(TIA-485)

asynchronous
serial

32 unit loads
(up to 256
devices with
some
hardware)

4000 10M Data acquisition
and control
systems

Ethernet serial 1024 1600 10G PC network
communications

IEEE-1394b
(FireWire 800)

serial 64 300 3.2G Video,
mass storage

IEEE-488
(GPIB)

parallel 15 60 8M Instrumentation

I2C synchronous
serial

40 18 3.4M Microcontroller
communications

Microwire synchronous
serial

8 10 2M Microcontroller
communications

MIDI serial current
loop

2 (more with
flow-through
mode)

50 31.5k Music,
show control

Parallel Printer
Port

parallel 2 (8 with
daisy-chain
support)

10–30 8M Printer

SPI synchronous
serial

8 10 2.1M Microcontroller
communications

USB asynchronous
serial

127 16 (up to 98
ft with 5
hubs)

1.5M, 12M,
480M

PC peripherals

Options and Choices

 5

These are some examples of ports controlled by UARTs:

• Microcontroller serial ports. Many microcontrollers contain one or more
UARTs for serial-port communications. When a hardware UART isn’t avail-
able, microcontroller firmware can emulate a UART’s functions, typically
with assistance from an on-chip timer.

• External UART chips that interface to microcontrollers or other CPUs.
• The RS-232 serial ports that were standard on PCs and other devices before

USB became common. Each of these ports contains a UART that interfaces
to the system’s CPU. Any PC with a free expansion slot can add this type of
port on an expansion card.

• RS-232 ports on PC Cards (also called PCMCIA cards). Any PC with a free
PC-Card slot can use these.

• Serial ports that connect to PCs via USB converter modules.
• Other serial ports used in long-distance and networking applications, often

in industrial-control applications. These interfaces include RS-485, RS-422,
and RS-423. Expansion cards, PC Cards, and USB converters with these
interfaces are available.

• Ports on serial-server modules that connect to Ethernet or Wi-Fi networks.

On PCs, ports that applications can access as COM ports include these:

• RS-232 ports on older motherboards or on expansion cards.
• Ports that connect to a PC via a USB converter that uses a driver that assigns

a COM port to the device. Converters are available as modules and as chips
for incorporating into circuits. A converter can convert between USB and
RS-232, RS-485, TTL serial, or even a parallel interface.

• Internal modems that interface to phone lines.
• Serial ports on network serial-server modules.

For USB virtual COM-port devices, Windows includes a driver for USB’s com-
munication devices class (CDC). For improved performance, some converters
use vendor-specific drivers in place of the provided Windows drivers.

�
�����	�����

Computers that communicate via serial ports don’t have to be all the same type.
Tiny microcontrollers can talk to the latest PCs as long as both ends of the link
use compatible interfaces and protocols. The PC examples in this book are for
the family of computers that has evolved from the IBM PC, including desktop

Options and Choices

 7

If the connection is to a serial network, each computer must ignore communi-
cations intended for other computers in the network and comply with network
protocols for addressing transmitted data to the appropriate computer(s).

Program code carries out these tasks, often with help from hardware.

���������

The programming for a serial interface can use any language, and the language
doesn’t have to be the same on every computer. The only requirement is that all
of the computers must agree on a format. Microcontroller programs might
access UART registers directly or use library functions or other higher-level
methods to set communications parameters and exchange data. PC applications
typically use higher-level functions to access ports.

�
�
�
��

A protocol is a set of rules that defines how computers manage communica-
tions. Serial communications must implement a low-level communication pro-
tocol and may also implement a higher-level message protocol.

���������	���
���	����

A communication protocol defines how the bits travel, including when a com-
puter can transmit, the bit rate, and in what order the bits transmit. The UART
typically handles the details of sending individual bits and storing received bits
on the serial port.

Two computers that want to exchange data must agree on whether both ends
can transmit at once or whether the computers need to take turns. Most wired
links between two computers are full duplex: both computers can transmit at
the same time. Many wireless links are half duplex: the computers must take
turns. A simplex link is one way only. A network with three or more computers
sharing a data path must use a protocol that defines when a computer can trans-
mit.

A communication protocol can include the use of status and control lines.
These lines can indicate when a transmitter has data to send or when a receiver
is able to accept new data. The process of exchanging this information is called
flow control. Hardware flow control uses dedicated lines for the signals. Devices
can also use software flow control to provide the same information by sending
defined codes, typically in the same path used for data.

Chapter 1

10

These are just a few examples. This book will guide you in choosing compo-
nents and writing programs for whatever serial-port application you have in
mind.

Chapter 2

16

to read the final bits, the timing may be off by so much that the receiver will
read the wrong bits and might not detect the Stop bit. The clocks need to stay
in sync only for the length of a word because each word begins with a new Start
bit that resynchronizes the clocks.

Because of the need for accurate timing, asynchronous interfaces require stable
timing references such as crystal oscillators. For best accuracy, the clock’s fre-
quency divided by 16 should be an integer multiple of the highest bit rate the
UART supports. For example, the UARTs in early PCs used a 1.8432-MHz
crystal. The crystal’s frequency divided by 16 equals the common bit rate of
115,200 bps. Newer UARTs often use an 18.432-MHz crystal to enable sup-
porting higher bit rates while allowing compatibility with earlier UARTs.

In a microcontroller, the chip’s main timing crystal usually serves as a reference
for hardware timers that control the UART’s clock. Some microcontrollers,
such as Microchip Technology’s PIC18F4520, have an internal frequency mul-
tiplier that provides a timing reference four times as fast as the external oscilla-
tor’s frequency.

To reduce errors, many UARTs take three samples in the middle of each bit and
use the logic level that matches two or more of the samples. To avoid detecting
brief noise glitches as Start bits, some UARTs read the Start bit a second time in
the middle of the bit and accept the Start bit only if the bit has remained a logic
low.

Figure 2-2: To determine when to send data and read received data, the transmitter
and receiver each use a clock that is typically 16 times the bit rate.

Chapter 2

20

Software uses the code point to obtain the encoded character, which represents
a character using a specific coding method. The code point and encoded char-
acter can have the same value or different values depending on the encoding
method.

An encoded character that represents a character in software consists of one or
more values called code units. A character’s code point never changes, but the
code unit(s) that make up an encoded character vary with the encoding
method. The number of code units that represent a character, their value(s),
and the number of bits in the code units vary with the character and encoding
method.

The three basic Unicode encoding methods are UTF-8, UTF-16, and UTF-32
(Table 2-1). Each can encode any character that has a defined code point. The
encoding methods use different algorithms to convert code points into code
units.

UTF-8 encoding uses 8-bit code units, and a UTF-8 encoded character is 1 to
4 code units wide. Basic U.S. English text can use UTF-8 encoding with each
character encoded as a single code unit whose value equals the lower byte of the
character’s code point. The character “A” has a UTF-8 encoding of 41h. The
encodings are identical to the ASCII encoding that has been in use for many
years. UTF-8 encoding is thus backwards compatible with ASCII encoding.

Basic U.S. English text includes upper- and lower-case Latin letters, the ten dig-
its, and common punctuation. Other values often transmitted are control codes
that specify actions such as carriage return (CR), line feed (LF), escape, delete,
and so on. The code points for these characters and control codes are in the
range U+0000–U+007F. The codes are defined in the Unicode code chart C0
Controls and Basic Latin.

For characters with code points of 80h and higher, UTF-8 uses multi-byte
encodings of 2 to 4 code units each. If a code unit in a UTF-8 encoded charac-
ter has bit 7 set to 1, the code unit is part of a multi-byte encoding. UTF-8 thus
has no single-byte encoded characters in the range 80h–FFh. Instead, characters
with code points in this range use encodings with multiple code units. For
example, the © character has a code point of A9h and a 2-byte UTF-8 encod-
ing of C2h A9h.

The chart that defines code points U+0080–U+00FF is C1 Controls and
Latin-1 Supplement. Many of these code points are assigned to accented char-
acters for European languages and additional control codes.

Formats and Protocols

 21

ANSI encoding is a legacy encoding method usually defined as the text and
control codes encoded according to a draft of an ANSI standard that Microsoft
implemented as code page 1252. (A code page is a table that defines character
encodings for a specific language.) UTF-8 is not backwards compatible with
ANSI encoding, which uses single-byte values in the range 80h–FFh. For exam-
ple, the ANSI encoding for © is A9h, but UTF-8 uses a 2-byte encoding for
this character.

UTF-16 encoding uses 16-bit code units, and UTF-16 encoded characters are 1
or 2 code units each. UTF-16 encoding represents more than 60,000 characters
as single code units whose values equal the characters’ code points. For example,
“A” is 0041h, and © is 00A9h. Characters with code points greater than FFFFh
are encoded as a pair of code units called a surrogate pair.

UTF-32 encoding uses 32-bit code units. A UTF-32 encoded character is
always a single code unit. A UTF-32 code unit always has the same value as the
character’s code point. For example, “A” is 00000041h, and © is 000000A9h.

The UTF-16 and UTF-32 methods have alternate forms to enable storing code
units as big endian (storing the most significant byte first in memory) or little
endian (storing the least significant byte first in memory). The unmarked forms
(UTF-16, UTF-32) are big endian unless the data is preceded by a byte-order
mark (FEFFh). On seeing a byte-order mark of FFFEh, the receiving computer
should reverse the byte order in the code units that follow. On seeing a
byte-order mark of FEFFh, the receiving computer should not reverse the byte
order in the code units that follow. The byte-order mark is the only defined use
for values FEFFh and FFFEh; the values don’t appear in any character encod-
ings.

The BE forms of the encoding methods (UTF-16BE, UTF-32BE) are always
big endian. The LE forms (UTF-16LE, UTF-32LE) are always little endian.
Again, computers can use any encoding method as long as both computers
understand what encoding the other computer is using.

Table 2-1: Unicode encoded characters can use any of three encoding methods.

���	���
����	� ��������	������ �	�������������������

UTF-8 8 1, 2, 3, or 4
UTF-16 16 1 or 2
UTF-32 32 1

Formats and Protocols

 23

Still, ASCII Hex has benefits. One reason to use ASCII Hex is to free all of the
other codes for other uses, such as flow-control codes, an end-of-file indicator,
or network addresses. ASCII Hex also allows protocols that support only seven
data bits to transmit any numeric value.

Other options are to send values as ASCII decimal, using only the codes for 0
through 9, or ASCII binary, using just 0 and 1.

Here are functions that convert bytes to and from ASCII Hex format:

�� Private Function ConvertAsciiHexToByte(ByVal asciiHexToConvert As String) As Byte

Dim convertedValue As Byte

convertedValue = Convert.ToByte(asciiHexToConvert, 16)

Return convertedValue

End Function

Private Function ConvertByteToAsciiHex(ByVal byteToConvert As Byte) As String

Dim convertedValue As String

convertedValue = Hex$(byteToConvert)

Return convertedValue

End Function

��� private byte ConvertAsciiHexToByte(string asciiHexToConvert)

{

byte convertedValue;

convertedValue = Convert.ToByte(asciiHexToConvert, 16);

return convertedValue;

}

private string ConvertByteToAsciiHex(byte byteToConvert)

{

string convertedValue = null;

convertedValue = System.Convert.ToString

(System.Convert.ToByte(byteToConvert), 16).ToUpper();

return convertedValue;

}

Chapter 2

30

can add the values represented by each pair of characters. Intel Hex and Motor-
ola S-Record are two data formats that uses checksums on ASCII Hex data.

The cyclic redundancy check (CRC) method uses more complex calculations to
obtain checksum values. Protocols that use CRC values include the file-transfer
protocols Kermit, XModem, YModem, and ZModem.

Hash values are very secure checksums produced by message detection code
(MDC) hash functions. To use hash values, the sender and receiver must share a
key, which is a value used in creating the hash value and in verifying the
received data.

A computer that receives data with a checksum can repeat the calculation to
obtain the checksum. If the checksum doesn’t match the expected value, the
computer knows it didn’t receive the same data the transmitting computer sent.
A computer that detects an error can notify the sending computer so it can try
again or take other action. After a number of unsuccessful tries, the transmit-
ting computer can give up, display an error message, or sound an alarm as
needed. A checksum adds little overhead to large data blocks.

A receiving computer should also know what to do if a message is shorter than
expected or if expected data or an end-of-message code doesn’t arrive. Instead of
waiting forever, the software should eventually time out and can attempt to
notify the sending computer if needed.

In another form of error checking, the transmitter sends each message twice
and the receiver verifies that the message is the same both times. Of course this
means each message takes twice as long to transmit. Sending duplicate data can
be useful when sending occasional, short bursts of data in an environment
prone to errors. Many infrared data links use this method.

Chapter 3

32

select Settings > Control Panel > System > Hardware > Device Manager. Or
save some clicks by creating a shortcut to the file devmgmt.msc in Win-
dows\System32.

To view a COM port in the Device Manager, click Ports (COM & LPT),
right-click a COM port, and select Properties. The Properties window has sev-
eral tabs that display the port’s property pages. A vendor-provided co-installer
can supply custom property pages for vendor-specific device properties. The
pages shown below are typical.

The General tab has basic information about the port.

COM Ports on PCs

 33

The Port Settings tab displays the default settings for the port. A USB/serial converter
doesn’t use the bit rate, parity, and Stop bits in communications between the PC and
the converter, but a driver can send these values to a device that uses the settings on its
serial port. For example, a USB/RS-232 converter can set the parameters of its RS-232
port to match values specified on the PC. The Advanced Settings window enables set-
ting buffer properties and the COM-port number. Applications can change the param-
eters from the default values set in the Device Manager.

Chapter 3

34

The Driver tab enables updating, disabling, and uninstalling the drivers assigned to the
port. The Driver Details window lists the drivers the device uses.

COM Ports on PCs

 35

The Details tab has a drop-down Property box that provides access to a variety of infor-
mation about a port, including device instance, hardware, and compatible IDs, class
installers and co-installers, and power-state information. In the window shown, the
Value pane shows the “Device description” property.

This page intentionally left blank

Chapter 4

44

International Telecommunication Union (ITU) and ISO 2110 from the Inter-
national Organization for Standardization (ISO).

The standard defines the names and functions of signals, electrical characteris-
tics of the signals, and mechanical specifications, including pin assignments.
Earlier versions didn’t include all of these items. The addition of new material,
such as recommended connectors, documented what had become standard
through popular use.

The standard designates 25 lines in the interface, but RS-232 ports rarely sup-
port more than the nine signals in Table 4-1. The additional signals are
intended for use with synchronous modems, secondary transmission channels,
and selecting a transmission speed on a dual-rate modem. Some applications
require only three lines (or even two, if the link is one way).

Much of the RS-232 terminology reflects its origin as a standard for communi-
cations between a computer terminal and an external modem. A “dumb” termi-
nal contains a keyboard, a display, a communications port for accessing a
remote computer, and little else. An RS-232 link connects the terminal to a
modem, which in turn accesses the phone lines that connect to the remote
computer. PCs with modems and network interfaces have made this type of ter-
minal connection nearly obsolete.

These days, an RS-232 port is more likely to connect a PC to an embedded sys-
tem or to connect two embedded systems. Much of the original RS-232 termi-
nology thus doesn’t apply to modern applications, but the hardware interface
remains useful.

���	���	���

The RS-232 standard calls the terminal end of the link the data terminal equip-
ment, or DTE. The modem end of the link is the data circuit-terminating
equipment, or DCE.

The signals and their functions are named from the perspective of the DTE.
For example, TX (transmit data) is an output on a DTE and an input on a
DCE, while RX (receive data) is an input on a DTE and an output on a DCE.

The RS-232 ports on PCs are almost always DTEs. It doesn’t matter which
device in a link is the DTE and which is the DCE, but every connection
between two computers must either have one of each or must emulate the
absent interface (typically DCE) with an adapter called a null modem. The null
modem swaps the lines so each output connects to its corresponding input.
Chapter 5 has more about these adapters.

Inside RS-232

 45

�$�	%���	�����

These are the three essential lines for 2-way RS-232 communications:

TX. Carries data from the DTE to the DCE. Sometimes called TD or
TXD.
RX. Carries data from the DCE to the DTE. Sometimes called RD or RXD.
SG. Signal ground. Sometimes called GND or SGND.

The remaining lines are flow-control and other status and control signals. The
RS-232 standard defines uses for all of the signals, but applications are free to
use the signals in any way as long as both ends agree on what the signals mean.

Many links use the RTS and CTS flow-control signals. As Chapter 2 explained,
in the most commonly used protocol, each computer uses an output bit to let
the other computer know when it’s OK to send data. The DCE asserts CTS
when ready to receive data, and the DTE asserts RTS when ready to receive
data. Before transmitting, a computer reads the opposite computer’s flow-con-
trol output. If the signal’s state indicates that the receiving computer isn’t ready
for data, the transmitting computer waits.

In links that use DTR and DSR, each computer typically asserts its output on
power up to indicate that the equipment is present and powered.

Table 4-1: The PC’s serial port and many other interfaces use at most the nine pins
named here.

���������

%&'����'���(

���������

%)*'����'���(

��
��� �	���� +!�� ���������	�

1 8 CD DCE control Carrier detect
2 3 RX DCE data Receive data
3 2 TX DTE data Transmit data
4 20 DTR DTE control Data terminal

ready
5 7 SG – – Signal ground
6 6 DSR DCE control Data set ready
7 4 RTS DTE control Request to send
8 5 CTS DCE control Clear to send
9 22 RI DCE control Ring Indicator
– 1, 9-19, 21,

23-25
unused – – –

Inside RS-232

 47

The status and control signals use the same voltages, but with positive logic. A
positive voltage indicates a logic 1 and a function that is On, asserted, or True,
and a negative voltage indicates a logic 0 and a function that is Off, not
asserted, or False.

An RS-232 interface chip typically inverts the signals and converts between
TTL/CMOS voltages and RS-232 voltages. On a UART’s output pin, a logic-1
data bit or an Off control signal is a logic high, which results in a negative volt-
age at the RS-232 output. A logic-0 data bit or asserted control signal is a logic
low at the UART and results in a positive voltage at the RS-232 output.

Because an RS-232 receiver can be at the end of a long cable, by the time the
signal reaches the receiver, the voltage may have attenuated or have noise riding
on it. To allow for degraded signals, the receiver accepts smaller voltages as
valid. A positive voltage of 3V or greater is a logic 0 at RX or asserted at a con-
trol input. A negative voltage of 3V or greater (more negative) is a logic 1 at RX
or Off at a control input. The logic level of an input between -3V and +3V is
undefined.

The noise margin, or voltage margin, is the difference between the output and
input voltages. RS-232’s large voltage swings result in a much wider noise mar-
gin than 5V TTL or CMOS logic. For example, an RS-232 output of +5V can
attenuate or have noise spikes as large as 2V at the receiver and will still be a
valid logic 0. Many RS-232 outputs have wider voltage swings that result in
even wider noise margins. The maximum allowed voltage swing is ±15V,
though receivers must accept voltages as high as ±25V without damage.

Two other terms you might hear in relation to RS-232 are Mark and Space. On
the data lines, Space is logic 0 (positive voltage), and Mark is logic 1 (negative
voltage). These names have their roots in the physical marks and spaces
mechanical recorders made as they logged binary data.

Table 4-2: RS-232 uses positive and negative voltages.

��������� �	���
�%�(

Logic 0 or On output +5 to +15
Logic 1 or Off output -5 to -15
Logic 0 or On input +3 to +15V
Logic 1 of Off input -3 to -15

Chapter 4

50

�$�	�#()*)

The MAX232 (Figure 4-1) includes two drivers that convert TTL or CMOS
inputs to RS-232 outputs and two receivers that convert RS-232 inputs to
TTL/CMOS-compatible outputs. The drivers and receivers also invert the sig-
nals.

The chip contains two charge-pump voltage converters that act as tiny, unregu-
lated power supplies that enable the chip to support loaded RS-232 outputs of
±5V or greater. Four external capacitors store energy for the supplies. The rec-
ommended value for the capacitors is 1µF or larger. If using polarized capaci-
tors, take care to get the polarities correct when you put the circuit together.
The voltage at pin 6 is negative, so its capacitor’s + terminal connects to ground.
Because the outputs can be as high as 10V, be sure the capacitors are rated for a
working voltage direct current (WVDC) of at least 15V. (Most are.)

+�$�	"�������	�$���

Interface chips to suit just about any application’s needs are available.

The MAX232A was an early improvement that uses smaller, 0.1µF
charge-pump capacitors and can operate at up to 200 kbps. The MAX233 and
MAX233A (Figure 4-1) require no external charge-pump capacitors at all.

The MAX3221 has just one driver and one receiver. For applications that use all
eight of the signals in a 9-wire interface, chips are available with three drivers
and five receivers (for DTEs) and with five drivers and three receivers (for
DCEs).

�����

Some chips have faster, non-RS-232-compliant slew rates to allow operation at
up to 1 Mbps. To support a faster bit rate in both directions, the interfaces at
both ends must use faster components. An example of a chip that supports
faster bit rates is the MAX3225.

�
,�-�� ���	.������

Many chips include power-saving features. A Shutdown input can place the
chip in a reduced-power mode. Some chips have a separate Enable input that
enables the receiver on detecting incoming data even if in shutdown mode.

Inside RS-232

 51

Figure 4-1: Chips like the MAX232 and MAX233A simplify interfacing 5V logic to
RS-232.

Chapter 4

52

The MAX3212 has several advanced power-saving features. When all of the
RS-232 inputs are less than +3V and greater than -3V, the chip assumes the
inputs are open (not connected) and switches to low-power mode. On detect-
ing an input equal to or more positive than +2.7V or equal to or more negative
than -2.7V, the chip exits the low-power mode and begins normal operation.
Additional inputs enable software to place the chip in and out of low-power
mode. The chip’s Receiver Enable Control input can save power by placing the
outputs of all receivers in a high-impedance state. High-impedance outputs pre-
vent current leaking from the interface chip into a UART or other component
whose supply voltage has been removed to save power. When the receivers are
high impedance, the chip’s Transition Detection output can indicate when a
transition has occurred at an input. This output is useful for waking up a
microcontroller that is in sleep mode and needs to wake up to process incoming
data. The Invalid Signal Detector input can indicate when a a remote port is
attached by going high on detecting a valid RS-232 voltage on any receiver.

Other chips can enter low-power mode automatically if there has been no activ-
ity for 30 seconds. The MAX3224 is an example.

/
�����	+���
��

An RS-232-compliant chip must have output voltage swings of at least ±5V. To
achieve the voltage swings, interface chips can use dual external power supplies,
internal charge pumps, inductor circuits, or a combination. For links that don’t
require RS-232’s full ±5V outputs, chips are available with smaller output-volt-
age swings.

The MAX3386E uses dual charge pumps and a low-dropout transmitter output
stage to enables output voltage swings of ±5V or greater even when powered at
+3V. The chip also has a Logic-level Supply input that enables interfacing the
chip’s TTL/CMOS inputs and outputs directly to a UART or another compo-
nent that has a supply voltage other than +3V.

The MAX3218 operates from a single supply voltage of +1.8V to +4.25V and
has output voltage swings of ±5V or greater. The chip requires an external
inductor to generate the positive voltage and uses a charge pump to generate
the negative voltage. The MAX3316 operates from a single supply voltage of
+2.25 to +3V and uses charge pumps to generate output voltage swings of
±3.7V.

Chapter 4

54

off and R2 pulls RS-232 Out near 5V. When the TTL/CMOS output is high,
Q1 switches on, and RS-232 Out is near 0V.

At the receiver, an input designed for use with 5V logic can be damaged by
RS-232 voltages, so the circuit must protect the 5V inputs. Transistor Q2
inverts and converts RS-232 voltages to 5V TTL/CMOS levels. The RS-232 In
signal drives the base of Q2. Resistor R3 limits Q2’s base current. Diode D1
protects Q2 by limiting its base voltage base to about -0.7V when RS-232 In
goes negative. When RS-232 In is at or below 0V, Q2 is off and R4 pulls the
TTL/CMOS input to 5V. When RS-232 In goes positive, Q2 switches on,
bringing the TTL/CMOS input low.

0���	������

Figure 4-4 shows an alternate 5V circuit that has wider voltage swings than the
previous circuit but is useful only in half-duplex links, which transmit in one
direction at a time. Parallax, Inc.’s Basic Stamp II uses this type of interface.
The negative output matches the negative transmitted voltage, and the positive
output is near +5V.

+15V

+3V

0V

-3V

-15V

+2V
+0.8V

+9V

+5V

-5V

-9V

MAX232 Logic 0 in (+2V to +15V)

MAX232 Logic 0 out (3k load) (+9V typical, +5V min.)
RS-232 Logic 0 (+3V to +15V)

MAX232 Logic 1 out (3k load) (-9V typical, -5V min.)
RS-232 Logic 1 (-3V to -15V)

MAX232 Logic 1 in (-15V to +0.8V)

RS-232 undefined (-3V to +3V)

Figure 4-2: The MAX232 and other RS-232 interface chips accept TTL and 5V CMOS
logic inputs.

Inside RS-232

 59

Table 4-4: In addition to RS-232, there are several other EIA/TIA interfaces for
unbalanced lines.

����� �����	� +"�')/)'1 +"�2�"�'-)/'� +"�'*3) +"�'*/4'�

Cable length, max
(ft), unshielded
cable, 20pF/ft,
100kbps

50 50 15 ft @ 64kbps 4000

Data rate, max
(bps)

20k 100k 64k 2.1M

Driver output
(minimum, V)

± 5 ± 3.6 ±3.3 ± 3.3, ±2*

Driver output
(maximum, V)

± 15 ± 6 ±13.2 ±6, ±10*

Receiver
sensitivity (V)

± 3 ± 0.2 ±3 ±0.2

Maximum
number of drivers

1 1 1 1

Maximum
number receivers

1 10 1 10

Receiver input
resistance (Ω)

3k-7k 450 (minimum) 3k-7k 450, 4k*

*Data and some control lines use a balanced interface. Other signals use an unbalanced interface.

Figure 4-6: An RS-423 interface can have just one transmitter but can have up to ten
receivers.

This page intentionally left blank

